Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor
نویسندگان
چکیده
BACKGROUND The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. METHODOLOGY/PRINCIPAL FINDINGS TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. CONCLUSIONS This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.
منابع مشابه
Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N.
Fluorescence in situ hybridization, associated with confocal laser scanning microscopy or epifluorescence microscopy with deconvolution system, has allowed the detection of a community of intracellular bacteria in non-axenic samples of the ectomycorrhizal fungus Laccaria bicolor S238N. The endobacteria, mainly alpha-proteobacteria, were present in more than half of the samples, which consisted ...
متن کاملIn situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N.
Bacterial proliferations have recurrently been observed for the past 15 years in fermentor cultures of the ectomycorrhizal fungus Laccaria bicolor S238N, suggesting the presence of cryptic bacteria in the collection culture of this fungus. In this study, intracellular bacteria were detected by fluorescence in situ hybridization in combination with confocal laser scanning microscopy in several c...
متن کاملLB-AUT7, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport and autophagocytosis.
We have identified LB-AUT7, a gene differentially expressed 6 h after ectomycorrhizal interaction between Laccaria bicolor and Pinus resinosa. LB-Aut7p can functionally complement its Saccharomyces cerevisiae homolog, which is involved in the attachment of autophagosomes to microtubules. Our findings suggest the induction of an autophagocytosis-like vesicular transport process during ectomycorr...
متن کاملThe major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N.
The primary carbohydrate metabolism of an ectomycorrhizal fungus and its transcriptional regulation has never been characterized at the genome scale although it plays a fundamental role in the functioning of the symbiosis. In this study, the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor S238N-H82 was explored to construct a comprehensive genome-wide inventory of pathways...
متن کاملGene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci.
In natural conditions, basidiomycete ectomycorrhizal fungi such as Laccaria bicolor are typically in the dikaryotic state when forming symbioses with trees, meaning that two genetically different individuals have to fuse or 'mate'. Nevertheless, nothing is known about the molecular mechanisms of mating in these ecologically important fungi. Here, advantage was taken of the first sequenced genom...
متن کامل